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ABSTRACT

World models are getting more and more popular in recent years. We introduce a
new architecture – TokenWM, that maintains the recurrent nature of state-space
models while incorporating tokenized latent states and a memory-augmented at-
tention mechanism to improve modeling capacity in complex environments. The
preliminary results on LIBERO benchmarks demonstrate that the new architecture
is more favorable to complex tasks than the popular RSSM architecture. We believe
TokenWM introduces a new design paradigm for recurrent world models, enabling
more expressive and scalable decision-making in complex environments. We will
open source the code in a short notice.

1 INTRODUCTION

The concept of a world model has become popular in recent years. Originally proposed in Ha &
Schmidhuber (2018), a world model needs to learn both a meaningful representation of the state of
the system (understanding) and a dynamic model that can predict the future states based on an action
sequence (reasoning). Then, such a model can facilitate decision-making by doing planning within
the world model instead of interacting with the real environments (Ha & Schmidhuber, 2018; Hafner
et al., 2019a). This type of model is heavily studied in the model-based Reinforcement Learning
(RL) field and also sometimes referring as State-Space Model (SSM) (Karl et al., 2017; Hafner et al.,
2019b; Becker et al., 2019). The most well-known model from this family is the RSSM (Hafner et al.,
2019b), which has been shown to be able to efficiently solve online RL on simulated locomotion
tasks (Hafner et al., 2019b;a), games (Hafner et al., 2020; 2023) and real-world robots (Wu et al.,
2023) and also Imitation Learning (IL) (Zhang et al., 2023b; Mazzaglia et al., 2024).

However, the RSSM structure cannot easily scaled to handle more complex environments such as
Minecraft, as evidenced by the poor reconstruction from Hafner et al. (2023), and robot manipulations,
as evidenced by the poor performances in Seo et al. (2022). On the other hand, due to the development
of new techniques from other fields like transformers (Vaswani et al., 2017), linear attention models
(Gu et al., 2021; Smith et al., 2022), and diffusion models (Alonso et al., 2024), recent works try to
integrate these techniques into world models. One line of works use the new backbones to enhance
the ability of SSM by replacing the recurrent models, e.g. GRU (Cho et al., 2014) in RSSM, with
transformers (Chen et al., 2022; Zhang et al., 2023a) or linear attention models (Deng et al., 2023;
Becker et al., 2024). Although the new backbones enhance the modeling capability of the dynamic
model, the latent space is still a single vector, which limits the amount of information that can be
modeled. Another line of work focuses only on prediction on the observation space, or a feature
space of the observation, with the transformers and diffusion models (Micheli et al., 2023; Alonso
et al., 2024) operating on a space of tokens, ignoring the need for representation learning.

In this paper, we study the possibility of an intermediate approach – we follow the recurrent nature of
the SSM, designing a standard prior-to-posterior module framework so that it can still learn sequential
state representation. The method is built on attention blocks accepting tokens as the information
resource, which is step-by-step fused with tokenized states, enhancing the capacity of the model
when facing complex environments. Due to the nature of limited memory preservation of recurrent
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Figure 1: Overview of the TokenWM and policy network. (a) A prior state hpt−1 learns to query the
information zt−1 from the new observation ot−1 to form the posterior state hqt−1, which is regularized
by the decoder. hqt−1 queries a memory bank filled with past states to form h∗

t−1, which is then sent
to the prior module to predict hpt together with at−1. (b) h∗

t−1 is queried by learnable tokens to have
action features, which are then concatenated with the repeated embedding c out of a pre-trained
language encoder. The fused features predict the action via several MLP layers.

attention blocks, we additionally design a memory bank and a reading mechanism to help consolidate
the past information in the framework without losing the merits in previous SSMs. We coin this new
architecture of world model TokenWM, which, to the best of our knowledge, is the first token-based
SSM-style world model. We have some preliminary results showcasing the advantage of TokenWM
over RSSM on the LIBERO benchmark (Liu et al., 2023).

2 PRELIMINARY

We consider a language-conditioned POMDP problem defined by the tuple {S,A, T, L,R,O,Ω},
where S is the state space, A is the action space, T : S ×A → S is the dynamic function, L is the
space of language instruction, R : S ×L → R is the reward function, O is the observation space, and
Ω : S → O is the emission function. The goal is to find a policy π : S × L → A which maximizes
the expected accumulated reward, or return, i.e. R(π) = Ea∼π[

∑
t rt]. The agent is given a dataset

of demonstrations {(o1:T , a1:T , l)} to learn the policy. Rewards are generally not available in the
dataset and will only be used for evaluation.

3 TOKENWM

In this section, we present the structure of TokenWM in detail. The framework largely follows the
SSM-style world models, which typically have four components:

encoder zt = fϕ(ot), posterior st ∼ qϕ(st|st−1, at−1, zt),

decoder ot ∼ pθ(ot|st), prior st ∼ pθ(st|st−1, at−1).

fϕ(ot) is the encoder to extract the features from the observation; qϕ(st|st−1, at−1, zt) and
pθ(st|st−1, at−1) are the posterior and the prior of the latent state variable; while pθ(ot|st) is
the decoder that decodes the observation distribution from the state. ϕ and θ represent the parameters
of the inference model and the generative model, respectively.

As mentioned before, normally, the state s is a vector of RD where D is the dimension of the state.
But in TokenWM, we will implement it as a set of tokens RNh×D, where Nh is the number of tokens.
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To not abuse the notation, we will use h to refer to the latent state in TokenWM. During this change,
we need to redesign all four components in SSM to make them compatible with the new token-based
format. We present an overview of the TokenWM structure in Figure 1 and will describe the designs
on each component below.

3.1 ENCODER

Normally, for image observation, the encoder is implemented as a CNN (Ha & Schmidhuber, 2018;
Hafner et al., 2019b; 2020) to output a vector feature of the image to be compatible with the later
modules. However, since we aim to work with tokens in TokenWM, we don’t need to have such
constraints. Thus, we generally consider adopting a ViT model (Dosovitskiy et al., 2020) as the
encoder and take the patch feature as the output, which should allow richer information to be passed
to the latent state. The adoption of ViT also opens the opportunity to use a lot of readily available
visual foundation models to deal with high-resolution images, which is known to be one of the
weaknesses of RSSM. To this end, the encoder in TokenWM, i.e. zt = fϕ(ot), outputs zt ∈ RNz×Dz ,
where Nz is the number of the patch tokens and Dz is the feature dimension of patch tokens.

3.2 PRIOR MODEL

In terms of functionality, the prior model hpt = fpθ (ht−1, at−1) needs to map one set of tokens to
another set of tokens with the same size by integrating a vector. Inspired by RT-1 (Brohan et al.,
2023), we use a combination of FiLM (Perez et al., 2018) and self-attention (Vaswani et al., 2017).
For the prior model, first, a Positional Encoding (PE) is added to the tokens, and then it goes through
a few blocks of FiLM and the post-norm self-attention layer. Note that we didn’t use the more
popular pre-norm structure for the self-attention layer because, in the experiment, we observed the
pre-norm structure tends to diverge when rolling out the model for longer. We speculate that the
direct residual connection in the pre-norm may not fit the recurrent scheme, while the post-norm
structure renormalizes the output after every layer stabilizes the transition.

3.3 POSTERIOR MODEL

As a common practice, the posterior model is normally based on the output of the prior model so
that some parameters are shared to make the prior model easier to train (Karl et al., 2017; Hafner
et al., 2019b). Thus, we define the posterior model in TokenWM as hqt = fqϕ(h

p
t , zt). The structure

of the posterior should be very similar to the prior, but instead of integrating a vector, a set of tokens
zt from the encoder needs to be integrated. We choose to use the cross-attention layer (Vaswani et al.,
2017) to integrate the observation tokens. To be specific, the latent state provides a query, while the
observation tokens provide the keys and values. In this way, the latent state can choose which part of
the observation to focus on when updating the states. To this end, we summarize the structure of the
posterior model: first PEs are added to both the prior state hpt and the observation tokens zt, then they
go through a few blocks of cross-attention and self-attention layers.

3.4 DECODER

The decoder needs to extract the relative information from the latent state hqt to output a prediction of
the quantity we care about and provide guidance for training the world model. Without losing any
generality, we also consider the outputs of the decoder to be a set of tokens, but it may not be the
same number as the latent tokens. To handle this nature, we adopt a perceiver-decoder (Jaegle et al.,
2021) structure, where a set of learnable tokens match the output size, serves as queries, and queries
the latent tokens with a cross-attention layer. Then, the result tokens go through a shared MLP to
the final outputs ôt or ẑt. Noted that, normally, we decode the original observation ôt for images. It
can be directly tokenized by reshaping, but when we use a rich pre-trained encoder, we can output ẑt
instead. We will abuse the notation to use ẑt in the rest of the paper.

3.5 ADDITIONAL MEMORY MODULE

As we observed in complex real-robot tasks, there can be delays in the action execution, which may
inhibit the model from learning a Markovian state. To combat that, we design an explicit memory
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Table 1: Success rates on LIBERO benchmark.

libero-spatial libero-object libero-goal libero-long
RSSM-XL (Hafner et al., 2023) 26.4% 46.6% 18.6% 4.4%

TokenWM (Ours) 68.2% 87.2% 68.6% 22.6%

module for TokenWM. We implement a memory bank as a queue with a limited size. The memory
bank maintains a small window of the past states. After the model infers the current state ht, it
queries the memory bank for the past information with a series of cross-attention and self-attention
layers. Formally, we define the memory module as h∗

t = fMθ (ht, [ht−n+2, ..., ht−1]).

3.6 POLICY

Although not a component of the world model, using the world model for a decision-making task
normally also involves a policy module. In TokenWM, we define the policy as πψ(at|h∗

t , ct), where
h∗
t is the augmented states after the memory module and ct is an optional condition variable that

offers context to the policy. For example, in the language-conditioned control, a representation of
the language can be viewed as ct. We adopt a similar structure with the decoder, where we first use
the perceiver-decoder to extract the output tokens, then it optional concatenates with the condition
and goes through MLPs for the final outputs. This structure also opens some new ways to design
the policy, where we can also treat actions in a group form. For example, when doing robotics
manipulation, the action space can be R7, where we have 3 for translation, 3 for rotation, and 1 for
the gripper. We can semantically group the actions into 3 groups and hope each output token can
capture more meaningful information for the group.

3.7 LOSS FUNCTION

The model is trained by optimizing three losses together, i.e. the information bottleneck loss, which
replaces the KL loss, the reconstruction loss, and the policy loss, i.e.

L = α||hqt − hpt ||22 + β||zt − ẑt||22 − γ log π(at|h∗
t , c), (1)

where α, β, and γ control the weight of each loss. Note that, in TokenWM, we discard the often-used
probabilistic formulation for the latent state since, in the experiments, we find it makes the training
unstable. We conjecture it could be caused by the independent sampling of multiple tokens. Thus, we
use the deterministic formulation (Ghosh et al., 2019) to stabilize the training.

4 EXPERIMENT

We conduct preliminary experiments on the LIBERO benchmark (Liu et al., 2023) to showcase
the performance gain of the TokenWM. The LIBERO benchmark was originally proposed as a
testbench for lifelong learning, but in this paper, we are following Kim et al. (2024) to use it as a
IL benchmark. We use four suites, namely spatial, object, goal, and long, for evaluation. Each suite
consists of 10 languaged conditioned tasks and provides a dataset with 500 demonstrations. We use
the filtered dataset from Kim et al. (2024), which removes the no-ops actions and re-renders the
image observation to 224 x 224. Following previous works, the actions are discretized to 256 bins
between the 1st and 99th percentile of the dataset distributions. We use a pre-trained DINOv2 (Oquab
et al., 2023) as the encoder. For the language condition, we use a pre-trained Universal Sentence
Encoder (Cer et al., 2018) from Reimers & Gurevych (2019). For the RSSM baseline, since it doesn’t
scale well to high-resolution images, we resize the image to 64 x 64 for it. We use the XL size model
of RSSM from Hafner et al. (2023) to match the size of TokenWM for a fair comparison. Both
models are trained with Adam optimizer (Kingma & Ba, 2017) with a learning rate of 1e-4, and the
model is evaluated every 1000 gradient steps with 500 trajectories on the test suite (50 trajectories for
each task). We report the best success rate during the training course. The results on the LIBERO
benchmark are shown in Table 1. We can clearly see that TokenWM significantly outperforms RSSM
on all four suites.
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5 DISCUSSION

In this paper, we propose TokenWM, a novel architecture for a recurrent world model. TokenWM can
leverage the rich capacity of token-form representation to handle complex environments. Preliminary
results on the LIBERO benchmark show that TokenWM significantly outperforms the popular RSSM
model of similar size, demonstrating its great potential. In future work, we plan to test TokenWM in
more settings, such as online RL, and conduct more ablation studies to understand the influence of
different design choices. We believe our work opens new possibilities for designing more effective
recurrent world models.
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APPENDIX

A HYPER-PARAMETERS

The hyper-parameters for TokenWM have been shown in Table 2.

Table 2: TokenWM hyper-parameters.

MODEL

WORLD STATE SIZE 64×512
ENCODER STRUCTURE VIT

ENCODER PRE-TRAINED WEIGHT DINOV2-L
PRIOR LAYER N=2

POSTERIOR LAYER P=4
MEMORY READER LAYER M=2

ALL ATTENTION HEAD 8
MEMORY BANK SIZE 5×64×512
POLICY MLP LAYER 2

MODEL SIZE 113M

TRAINING

BATCH SIZE 32
HORIZON 64

OPTIMIZER ADAMW
TRAINING STEP 16,000
GRADIENT CLIP 100

MODEL & POLICY INITIAL LEARNING RATE 1e-4
RECONSTRUCTION LOSS WEIGHT α=10.0

STATE LOSS WEIGHT β=0.1
POLICY LOSS WEIGHT γ=1.0

B TRAINING DETAILS AND ABLATIONS

Policy cheating During training, we find a failure mode for the RSSM model on the LIBERO
benchmark exists. LIBERO tasks normally involve a few steps to solve. For example, for the task
"Pick up the black bowl between the plate and the ramekin and place it on the plate," one needs to
first approach the black bowl, pick it up, move to the plate, and then drop the bowl. During each
step, the actions can be very similar to each other, and only at the changing point between steps can
the actions change dramatically. When we allow the gradient from the policy to update the model
weights, the policy can cheat by forcing the state to store the previous action and decode the action
again as the current action. So, for RSSM, we have to detach the policy’s gradient from influencing
the model learning.

On the other hand, TokenWM seems to suffer less from this problem as it can train stabling with the
gradient from the policy. We conjecture that this robustness may be from the FiLM layer we use to
integrate the action. As the FiLM layer uses the action to compute a scale and a shift to modify the
latent state, it may be much harder for the policy to decode the previous action.

Remove the decoder to boost the policy performance Although the decoder provides essential
guides to learn meaningful latent states, it may have a conflict of interest with the policy. Thus,
we explore a two-phase training scheme, achieving the maximal performance on the policy side by
removing the decoder from some point.

In the first phase, the model is trained with both the decoder and the policy, guaranteeing a meaningful
state embedding flow. After a certain amount of gradient steps, we remove the decoder, i.e., by setting
the decoder loss weight β to 0. In the meantime, we also find to scale up the policy loss weight γ to
100 so that the information bottleneck does not collapse after the decoder is removed. We show the
learning curve of TokenWM on the libero-spatial suite in Figure 2. As we can see, after removing the
decoder at gradient step 10000, the success rate immediately drops to 0 since the previous balance
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Figure 2: Learning curve of TokenWM on libero-spatial suite.

Table 3: Ablation of the memory module.

libero-spatial
TokenWM w/o memory 60.4%
TokenWM w/ memory 68.2%

between the target and the information bottleneck has been broken. Then, it quickly recovers to a
new balance point between policy loss and information bottlenecks and reaches a significantly higher
success rate than before.

Effect of the memory module To showcase the effect of the memory module, we conduct an ablation
study on the libero-spatial suite. The result is shown in Table 3. We can see that, although LIBERO is
a simulated environment without much delay, having the memory module still gives a better success
rate. We believe it is evident that the memory module can boost the model’s capacity in general.
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